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Abstract

We introduce a model of a Bose–Einstein condensate based on the one-
dimensional nonlinear Schrödinger equation, in which the nonlinear term
depends on the domain. The nonlinear term changes a cubic term into a quintic
term, according to the domain considered. We study the existence, stability and
bifurcation of solutions, and use the qualitative theory of dynamical systems to
study certain properties of such solutions.

PACS number: 05.45.−a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Interest in the Bose–Einstein condensates (BEC) has increased in recent years. In this context,
many types of nonlinear structures have been predicted to exist or have been experimentally
observed, among which we can cite dark [1] and bright [2] solitons, gap solitons [3], etc.

From a theoretical standpoint, and for experimentally relevant conditions, the static and
dynamical properties of a BEC can be described by means of an effective mean-field equation
known as the Gross–Pitaevskii (GP) equation [4, 5]. This is a variant of the famous nonlinear
Schrödinger (NLS) equation, which is known to be a universal model describing the evolution
of complex field envelopes in nonlinear dispersive media [6]. The relevance and importance
of the NLS model is not limited to the cases of conservative systems, theory of solitons and
exact solutions [6–8]; in fact, the NLS equation is directly connected to dissipative universal
models, such as the complex Ginzburg–Landau equation [9].

In BEC applications, the possibility of using Feschbach resonances to control the
nonlinearities [10, 11] has led to the proposal of many different nonlinear phenomena induced
by the manipulation of the scattering length in time [12–14], in space [15, 16] or both [17].
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A new phenomenon arises when the nonlinearity changes with regard to the domain
considered. There is currently a great interest in the literature dealing with the issue of
spatially modulated nonlinearity [18–20], but very few papers deal with problems in which the
nonlinearity changes with regard to the domain considered. We know only of the following
references: in [21], the authors introduced a dynamical model of a Bose–Einstein condensate
based on the two-dimensional Gross–Pitaevskii equation, in which the nonlinear coefficient is
a function of radius. Within the nonlinear optic we find [22], in which the author deals with
nonlinear surface waves in a certain model layered structure consisting of a layer of thickness
2D and dielectric constant ε, placed between two layers of a medium with a dielectric constant
of the form

ε = ε + α|E|2. (1)

A further approach to this same problem can be found in [23].
In this paper, we study the solutions of the Gross–Pitaevskii equation in a domain medium

such that the internal domain with thickness ε > 0 has a nonlinear self-focusing quintic
response, while the external domain has a self-focusing cubic response. Thus, we obtain a
series of domains in a BEC, where the interactions between particles of the condensate are
modeled, alternatively, for |x| > ε, by the cubic nonlinear Schrödinger equation,

−u′′(x) + ω2u(x) − u3(x) = 0 (2)

and, for |x| < ε, by the quintic nonlinear Schrödinger equation

−u′′(x) + ω2u(x) − u5(x) = 0. (3)

We should note that this model can also be introduced in nonlinear optics. Under some
hypotheses, this equation could model the propagation of electromagnetic waves through
a medium consisting of layers of dielectric material (see, for example, [24], for a detailed
explanation of the physical background).

The remainder of this paper is organized as follows. In sections 2 and 3, we formulate the
model, and present the general framework. Section 4 is devoted to the existence and bifurcation
of solutions. In section 5, we use a qualitative analysis to study the solutions obtained in the
previous section. We show the existence of symmetric and asymmetric solutions. Finally,
section 6 contains a study of the stability of the solutions.

2. General framework

In this section, we consider a domain medium, such that the internal domain with thickness
ε > 0 has a nonlinear self-focusing quintic response, while the external domain has a self-
focusing cubic response. This model leads us to study the following differential equation:

−u′′(x) + ω2u(x) = fε(x, u)u(x), u ∈ H 1(R) (4)

where ω is the eigenvalue of the linear problem and

fε(x, u) =
{
αu4, if |x| < ε

u2, if |x| > ε
(5)

with α ∈ R. If we introduce the characteristic function χ of the interval [−1, 1], i.e.

χ
(x

ε

)
=

{
1, if |x| < ε

0, if |x| > ε
(6)

we can write fε(x, u) as

fε(x, u) = αχ
(x

ε

)
u4 +

(
1 − χ

(x

ε

))
u2, (7)
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and equation (4) becomes

−u′′(x) + ω2u(x) = u3 + χ
(x

ε

)
(αu5 − u3), u ∈ H 1(R). (8)

We can therefore treat this problem as a perturbative problem (see, for example, [25, 26] for
an introduction to perturbative methods).

The solutions of equation (4) are the critical points on H 1(R) of

Iε,ω = 1

2

∫
R

|u′|2 dx +
1

2
ω2

∫
R

|u|2 dx − 1

4

∫
R

u4 dx + G(ε, u), (9)

where

G(ε, u) =
⎧⎨
⎩

−
∫

R

[
α

6
u6(x)−1

4
u4(x)

]
χ

(x

ε

)
dx if ε > 0

0 if ε = 0.

(10)

Thus, we can write the perturbed functional Iε,ω as

Iε,ω = I0 + G(ε, u) (11)

where

I0 = 1

2

∫
R

|u′|2 dx +
1

2
ω2

∫
R

|u|2 dx−1

4

∫
R

u4 dx (12)

is the unperturbed functional, I0 ∈ C2(H 1(R), R), and G ∈ C3(H 1(R)) is the perturbation.

3. The unperturbed and perturbed problem

The unperturbed problem I ′
0(u) = 0 is the equation

−u′′(x) + ω2u(x) = u3, u ∈ H 1(R) (13)

which, fixed ω2, has a unique even positive solution u0(x) such that

u0(x) =
√

2ω

cosh(ωx)
(14)

u′
0(0) = 0, lim

|x|→∞
u0(x) = 0. (15)

Since (13) is translation invariant, it follows that any

uω(x) := u0(x + ξ), ξ ∈ R, (16)

is also a solution of equation (13). Then I0 has a (non-compact) one-dimensional critical
manifold given by

Z = {uω(x) := u0(x + ξ) : ξ ∈ R}. (17)

It is possible to prove that Z is a non-degenerate manifold [26], i.e.,

Ker[I ′′
0 (uξ )] = Tuξ

Z, ∀uξ ∈ Z. (18)

Let us define the following conditions on G, which will be useful for the proof of existence:

(i) G ∈ C(R × H 1(R), R) and is such that G(0, u) = 0, for all u ∈ H 1(R). Moreover, the
map u → G(ε, u) is of class C2, for all ε ∈ R, and DuG(ε, u) as well as DuuG(ε, u) are
continuous.

(ii) There exists β > 0 such that ‖DuG(ε, u)‖H 1 = o(εβ), as ε → 0.
(iii) There exists γ > 0 and 
 : Z → R such that

lim
ε→0


(ε, u)

εγ
= 
(u). (19)
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4. Existence and bifurcation of solutions

The following theorem gives the existence of solutions of equation (4) (see [25]).

Theorem 1. Let us suppose that I0 ∈ C2(H 1(R), R) has a smooth critical manifold Z which
is non-degenerate. Let G satisfy (1), (2) and (3) and let u ∈ Z be a strict local maximum or
minimum of 
.

Then for |ε| small the functional Iε = I0 + G(ε, ·) has a critical point uε and if u is
isolated, then uε → u as ε → 0.

It is clear that the function G satisfies the condition (1). We shall now prove condition (2).
Through the change of variable y = x/ε we find

|G(ε, u)| = |ε|
∫

R

[
α

6
u6(εy)−1

4
u4(εy)

]
χ(y) dy. (20)

As regards DuG(ε, u) we find, for any φ ∈ H 1(R),

|(DuG(ε, u)|φ)| = |
∫

R

ε[αu5(εy) − u3(εy)]φ(εy)χ(y) dy. (21)

Since H 1(R) ⊂ CB(R) we infer that

|(DuG(ε, u)|φ)| � |ε|‖u‖5
L∞(R)‖φ‖L∞(R)α

∫
R

χ(y) dy

− |ε|‖u‖3
L∞(R)‖φ‖L∞(R)

∫
R

χ(y) dy (22)

and hence

‖DuG(ε, u)‖ � |ε|C
∫

R

χ(y) dy (23)

for some C > 0, proving that

‖DuG(ε, u)‖ → 0 (24)

as ε → 0.
Moreover, we obtain that for ε > 0

G(ε, uω(· + ξ)) = −
∫

R

χ
(x

ε

) [
α

6
u6

ω(x + ξ) − 1

4
u4

ω(x + ξ)

]
dx

= −
∫ ε

−ε

α

6
u6

ω(x + ξ) − 1

4
u4

ω(x + ξ) dx

= −ε

∫ 1

−1

α

6
u6

ω(εx + ξ) − 1

4
u4

ω(εx + ξ) dx.

We thus discover that the condition (3) holds with γ = 1 and


ω(ξ) = −α

3
u6

ω(ξ) +
1

2
u4

ω(ξ). (25)

The behavior of 
ω depends on the value of ω. In particular, there exists ω0 = 1/
√

2α such
that, for ε > 0 small,

(i) For 0 < ω < ω0, 
ω has a unique global maximum at ξ = 0 (see figure 1(a)).
(ii) For ω > ω0, 
ω has minimum at ξ = 0, while the global maximum is achieved at some

±ξω 
= 0 (see figure 1(b)).
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Figure 1. (a) Graph of 
ω , for ω < ω0. (b) Graph of 
ω , for ω > ω0. In both cases, α = 1.

N

A

B

C

D

E

Figure 2. Bifurcation diagram for equation (4), where N is the L2-norm of the solutions of
equation (4). The curve in bold type represents the asymmetric solutions.

Thus, by using theorem 1, equation (4) has, for ε small, a solution uε,ω, for all ω > 0
branching from the trivial solution at ω = 0. This solution corresponds to the curve AB

in figure 2, which is a symmetric solution with regard to x, since ξ = 0. In addition, at
ω = ω0 there is a secondary bifurcation of solutions ũε,ω of equation (4), corresponding to
ξω (see figure 2). Thus, the curve BE corresponds to a symmetric solution while BCD is
a double curve corresponding to two asymmetric solutions, ũ1ε,ω and ũ2ε,ω. These solutions
ũiε,ω, i = 1, 2 are not symmetric with regard to x because ξω 
= 0 (see figure 1(b)).

5. Qualitative analysis and phase portraits

To corroborate the results of the previous section, we calculate the solutions of equation (4) in a
qualitative manner. Thus, the solutions of equation (4) may be represented by composite phase
portraits constructed from superpositions of the phase portraits of the following individual
problems:

u′ = v, v′ = ω2u − αu5, −ε � x � ε (26)

and

u′ = v, v′ = ω2u − u3, |x| > ε. (27)

In figure 3, we depict phase portraits for the above equations at fixed values of ω2 and α.
These phase portraits arise from a superposition of two symmetrically placed homoclinic orbits,
which correspond to the cubic nonlinear Schrödinger equation, and another two symmetrically
placed homoclinic orbits, which correspond to the quintic nonlinear Schrödinger equation.
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Figure 3. Composite phase portrait representing the solutions of equation (4) constructed from
superpositions of two homoclinic orbits, for α = 1. (a) There exists a unique symmetric wave
before bifurcation (ω0 = 1/

√
2), which is given by the curve (0 − 1 − 2 − 0) (see the text).

(b) Beyond ω0 a symmetric wave and two asymmetric waves can be constructed. For ω = 1, we
show the symmetric wave, which is the curve 0 − 2 − 3 − 0, and the asymmetric waves, which are
0 − 2 − 4 − 0 and 0 − 1 − 3 − 0 (see the text). Both asymmetric waves are symmetric in relation
to each other.

Below critical value (ω0 = 1/
√

2α) a symmetric solution exists and is given by the curve
(0 − 1 − 2 − 0), where the path 0 − 1 is given by the dashed red curve, the path 1 − 2 is given
by the solid blue curve and the path 2−0 is again given by the dashed red curve, (see figure 3(a)),
while beyond ω0 more than one composite phase portrait can be constructed (figures 3(b)).
Thus, we find a pair of asymmetric standing waves, the first of which is the curve (0−2−4−0),
(the path 0 − 2 is given by the dashed red curve, the path 2 − 4 is given by the solid blue curve
and the path 4 − 0 is again given by the dashed red curve) and the second of which is the curve
(0 − 1 − 3 − 0), (the path 0 − 1 is given by the dashed red curve, the path 1 − 3 is given by
the solid blue curve and the path 3 − 0 is again given by the dashed red line), together with
the symmetric solution, the curve (0 − 2 − 3 − 0), (the path 0 − 2 is given by the dashed red
curve, the path 2 − 3 is given by the solid blue curve and the path 3 − 0 is again given by the
dashed red line). So, after we pass the value ω0, we have three solutions, one symmetric and
two asymmetric.

6. Remarks on stability of solutions

Here we shall briefly discuss the orbital stability of solitary waves eiω2t uε(x) corresponding to
the solutions found in theorem 1.

We say that uε is orbitally stable if a solution ψ(t, x) of the nonlinear Schrödinger equation
exists for all t � 0 and remains H 1—close to the solitary wave eiω2t uε(x), provided ψ(0, x)

is sufficiently close to uε(x) in HR. See, for example, [27, 28]. Since the orbital stability
depends on ω, we will emphasize the dependence on ω by writing uε,ω instead of uε.

Let mε,ω denote the Morse index of uε,ω as a critical point of Iε and let

μ(ε, ω) = ∂

∂ω2

∫
R

|uε,ω|2 dx. (28)

According to [27] (see also [25]), we know that uε,ω is orbitally stable provided that mε,ω = 1
and μ(ε, ω) > 0. Furthermore, if either mε,ω > 1 or mε,ω = 1 but μ(ε, ω) < 0, we have
instability.

We can therefore evaluate the stability of the previous solutions by calculating the Morse
index of the solutions uε,ω and ũε,ω. Thus, for ω < ω0 (respectively for ω > ω0), uε,ω

corresponds to a maximum (respectively a minimum) of 
ω. Moreover, ũε,ω(ω > ω0)

6
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corresponds to a maximum of 
ω. It follows that the Morse index of uε,ω is 2 or 1, provided
that, respectively, ω < ω0 and ω > ω0. Similarly, the Morse index of ũε,ω is 2. Provided that
the Vakhitov–Kolokolov criterion is satisfied, i.e.

∂

∂ω2

∫
R

|uε,ω|2 dx > 0 (29)

for ω > ω0, one infers that the stationary wave corresponding to the symmetric solution is
orbitally stable if ω > ω0. When ω < ω0, the stationary wave corresponding to the symmetric
solution is unstable. Thus, when ω crosses ω0 there is a change of stability: the symmetric
solution becomes stable while the asymmetric solution is unstable.

7. Conclusions

In this paper, we have introduced a model of a Bose–Einstein condensate based on the one-
dimensional nonlinear Schrödinger equation, in which the nonlinear term depends on the
domain. We have studied the existence, stability and bifurcation of solutions, and have used
the qualitative theory of dynamical systems to study some properties of such solutions.
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